Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures.
نویسندگان
چکیده
The objective of this study was to systematically evaluate and compare the effects of select antimethanogen compounds on methane production, feed digestion and fermentation, and populations of ruminal bacteria and methanogens using in vitro cultures. Seven compounds, including 2-bromoethanesulphonate (BES), propynoic acid (PA), nitroethane (NE), ethyl trans-2-butenoate (ETB), 2-nitroethanol (2NEOH), sodium nitrate (SN), and ethyl-2-butynote (EB), were tested at a final concentration of 12 mM. Ground alfalfa hay was included as the only substrate to simulate daily forage intake. Compared to no-inhibitor controls, PA, 2NEOH, and SN greatly reduced the production of methane (70 to 99%), volatile fatty acids (VFAs; 46 to 66%), acetate (30 to 60%), and propionate (79 to 82%), with 2NEOH reducing the most. EB reduced methane production by 23% without a significant effect on total VFAs, acetate, or propionate. BES significantly reduced the propionate concentration but not the production of methane, total VFAs, or acetate. ETB or NE had no significant effect on any of the above-mentioned measurements. Specific quantitative-PCR (qPCR) assays showed that none of the inhibitors significantly affected total bacterial populations but that they did reduce the Fibrobacter succinogenes population. SN reduced the Ruminococcus albus population, while PA and 2NEOH increased the populations of both R. albus and Ruminococcus flavefaciens. Archaeon-specific PCR-denaturing gradient gel electrophoresis (DGGE) showed that all the inhibitors affected the methanogen population structure, while archaeon-specific qPCR revealed a significant decrease in methanogen population in all treatments. These results showed that EB, ETB, NE, and BES can effectively reduce the total population of methanogens but that they reduce methane production to a lesser extent. The results may guide future in vivo studies to develop effective mitigation of methane emission from ruminants.
منابع مشابه
Effects of methanogenic inhibitors on methane production and abundance of methanogen and cellulolytic bacteria in in-vitro ruminal cultures
متن کامل
Ruminal Methane Emission, Microbial Population and Fermentation Characteristics in Sheep as Affected by Malva sylvestris Leaf Extract: in vitro Study
The objective of this study was to investigate in vitro effect of Malva sylvestris leaf extract (at 0, 25, 50 and 100 µL/30 mL of medium) on sheep ruminal cellulolytic and total viable bacteria growth, protozoa populations, methane production, neutral detergent fiber degradability (NDFD) and fermentation efficiency of oat hay. The addition of Malva sylvestris leaf extract at 25, 50 and 100 µL l...
متن کاملEvidence for para dechlorination of polychlorobiphenyls by methanogenic bacteria.
When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have ind...
متن کاملRuminal Fermentation of Anti-Methanogenic Nitrate- and Nitro-Containing Forages In Vitro
Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effec...
متن کاملEffects of extracts derived from pistachio by-products on ruminal fermentation and methane production
The objective of this study was to evaluate the effects of different doses of pistachio by-product (PBP) extracts supplemented with alfalfa hay (AH) or barley grain (BG) on microbial fermentation in an in vitro fermentation system. The total extracted phenolic compounds were 36.96, 65.78, 67.02 and 8.85% and total extracted tannin contents were 37.11, 59.64, 56.87 and 7.55% when PBP was extract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 77 8 شماره
صفحات -
تاریخ انتشار 2011